Физическая сущность постоянной планка. Планка постоянная Называется постоянной планка h она

|
постоянная планка, чему равна постоянная планка
Постоя́нная Пла́нка (квант действия) - основная константа квантовой теории, коэффициент, связывающий величину энергии кванта электромагнитного излучения с его частотой, так же как и вообще величину кванта энергии любой линейной колебательной физической системы с её частотой. Связывает энергию и импульс с частотой и пространственной частотой, действия с фазой. Является квантом момента импульса. Впервые упомянута Планком в работе, посвящённой тепловому излучению, и потому названа в его честь. Обычное обозначение - латинское. Дж·c эрг·c. эВ·c.

Часто применяется величина:

Дж·c, эрг·c, эВ·c,

называемая редуцированной (иногда рационализированной или приведённой) постоянной Планка или постоянной Дирака. Применение этого обозначения упрощает многие формулы квантовой механики, так как в эти формулы традиционная постоянная Планка входит в виде деленной на константу.

На 24-й Генеральной конференции по мерам и весам 17-21 октября 2011 года была единогласно принята резолюция, в которой, в частности, предложено в будущей ревизии Международной системы единиц (СИ) переопределить единицы измерений СИ таким образом, чтобы постоянная Планка была равной точно 6,62606X·10−34 Дж·с, где Х заменяет одну или более значащих цифр, которые будут определены в дальнейшем на основании наиболее точных рекомендаций CODATA. этой же резолюции предложено таким же образом определить как точные значения постоянную Авогадро, элементарный заряд и постоянную Больцмана.

  • 1 Физический смысл
  • 2 История открытия
    • 2.1 Формула Планка для теплового излучения
    • 2.2 Фотоэффект
    • 2.3 Эффект Комптона
  • 3 Методы измерения
    • 3.1 Использование законов фотоэффекта
    • 3.2 Анализ спектра тормозного рентгеновского излучения
  • 4 Примечания
  • 5 Литература
  • 6 Ссылки

Физический смысл

В квантовой механике импульс имеет физический смысл волнового вектора, энергия - частоты, а действие - фазы волны, однако традиционно (исторически) механические величины измеряются в других единицах (кг·м/с, Дж, Дж·с), чем соответствующие волновые (м−1, с−1, безразмерные единицы фазы). Постоянная Планка играет роль переводного коэффициента (всегда одного и того же), связывающего эти две системы единиц - квантовую и традиционную:

(импульс) (энергия) (действие)

Если бы система физических единиц формировалась уже после возникновения квантовой механики и приспосабливалась для упрощения основных теоретических формул, константа Планка вероятно просто была бы сделана равной единице, или, во всяком случае, более круглому числу. теоретической физике очень часто для упрощения формул используется система единиц с, в ней

.

Постоянная Планка имеет и простую оценочную роль в разграничении областей применимости классической и квантовой физики: она в сравнении с величиной характерных для рассматриваемой системы величин действия или момента импульса, или произведений характерного импульса на характерный размер, или характерной энергии на характерное время, показывает, насколько применима к данной физической системе классическая механика. А именно, если - действие системы, а - её момент импульса, то при или поведение системы с хорошей точностью описывается классической механикой. Эти оценки достаточно прямо связаны с соотношениями неопределенностей Гейзенберга.

История открытия

Формула Планка для теплового излучения

Основная статья: Формула Планка

Формула Планка - выражение для спектральной плотности мощности излучения абсолютно чёрного тела, которое было получено Максом Планком для равновесной плотности излучения. Формула Планка была получена после того, как стало ясно, что формула Рэлея - Джинса удовлетворительно описывает излучение только в области длинных волн. 1900 году Планк предложил формулу с постоянной (впоследствии названной постоянной Планка), которая хорошо согласовывалась с экспериментальными данными. При этом Планк полагал, что данная формула является всего лишь удачным математическим трюком, но не имеет физического смысла. То есть Планк не предполагал, что электромагнитное излучение испускается в виде отдельных порций энергии (квантов), величина которых связана с частотой излучения выражением:

Коэффициент пропорциональности впоследствии назвали постоянной Планка , = 1.054·10−34 Дж·с.

Фотоэффект

Основная статья: Фотоэффект

Фотоэффект - это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Фотоэффект был объяснён в 1905 году Альбертом Эйнштейном (за что в 1921 году он, благодаря номинации шведского физика Озеена, получил Нобелевскую премию) на основе гипотезы Планка о квантовой природе света. работе Эйнштейна содержалась важная новая гипотеза - если Планк предположил, что свет излучается только квантованными порциями, то Эйнштейн уже считал, что свет и существует только в виде квантованных порций. Из закона сохранения энергии, при представлении света в виде частиц (фотонов), следует формула Эйнштейна для фотоэффекта:

где - т. н. работа выхода (минимальная энергия, необходимая для удаления электрона из вещества), - кинетическая энергия вылетающего электрона, - частота падающего фотона с энергией, - постоянная Планка. Из этой формулы следует существование красной границы фотоэффекта, то есть существование наименьшей частоты, ниже которой энергии фотона уже не достаточно для того, чтобы «выбить» электрон из тела. Суть формулы заключается в том, что энергия фотона расходуется на ионизацию атома вещества, то есть на работу, необходимую для «вырывания» электрона, а остаток переходит в кинетическую энергию электрона.

Эффект Комптона

Основная статья: Эффект Комптона

Методы измерения

Использование законов фотоэффекта

При данном способе измерения постоянной Планка используется закон Эйнштейна для фотоэффекта:

где - максимальная кинетическая энергия вылетевших с катода фотоэлектронов,

Частота падающего света, - т. н. работа выхода электрона.

Измерение проводится так. Сначала катод фотоэлемента облучают монохроматическим светом с частотой, при этом на фотоэлемент подают запирающее напряжение, так, чтобы ток через фотоэлемент прекратился. При этом имеет место следующее соотношение, непосредственно вытекающее из закона Эйнштейна:

где - заряд электрона.

Затем тот же фотоэлемент облучают монохроматическим светом с частотой и точно также запирают его с помощью напряжения

Почленно вычитая второе выражение из первого, получаем

откуда следует

Анализ спектра тормозного рентгеновского излучения

Этот способ считается самым точным из существующих. Используется тот факт, что частотный спектр тормозного рентгеновского излучения имеет точную верхнюю границу, называемую фиолетовой границей. Её существование вытекает из квантовых свойств электромагнитного излучения и закона сохранения энергии. Действительно,

где - скорость света,

Длина волны рентгеновского излучения, - заряд электрона, - ускоряющее напряжение между электродами рентгеновской трубки.

Тогда постоянная Планка равна

Примечания

  1. 1 2 3 4 Fundamental Physical Constants - Complete Listing
  2. On the possible future revision of the International System of Units, the SI. Resolution 1 of the 24th meeting of the CGPM (2011).
  3. Agreement to tie kilogram and friends to fundamentals - physics-math - 25 October 2011 - New Scientist

Литература

  • John D. Barrow. The Constants of Nature; From Alpha to Omega - The Numbers that Encode the Deepest Secrets of the Universe. - Pantheon Books, 2002. - ISBN 0-37-542221-8.
  • Steiner R. History and progress on accurate measurements of the Planck constant // Reports on Progress in Physics. - 2013. - Vol. 76. - P. 016101.

Ссылки

  • Ю. К. Земцов, Курс лекций по атомной физике, анализ размерностей
  • История уточнения постоянной Планка
  • The NIST Reference on Constants, Units and Uncertainty

постоянная планка, чему равна постоянная планка

Постоянная Планка Информацию О

Постоянная Планка определяет границу между макромиром, где действуют законы механики Ньютона, и микромиром, где действуют законы квантовой механики.

Макс Планк — один из основоположников квантовой механики — пришел к идеям квантования энергии, пытаясь теоретически объяснить процесс взаимодействия между недавно открытыми электромагнитными волнами (см. Уравнения Максвелла) и атомами и, тем самым, разрешить проблему излучения черного тела . Он понял, что для объяснения наблюдаемого спектра излучения атомов нужно принять за данность, что атомы излучают и поглощают энергию порциями (которые ученый назвал квантами ) и лишь на отдельных волновых частотах. Энергия, переносимая одним квантом, равна:

где v — частота излучения, а h элементарный квант действия, представляющий собой новую универсальную константу, получившую вскоре название постоянная Планка . Планк же первым и рассчитал ее значение на основе экспериментальных данных h = 6,548 × 10 -34 Дж·с (в системе СИ); по современным данным h = 6,626 × 10 -34 Дж·с. Соответственно, любой атом может излучать широкий спектр связанных между собой дискретных частот, который зависит от орбит электронов в составе атома. Вскоре Нильс Бор создаст стройную, хотя и упрощенную модель атома Бора , согласующуюся с распределением Планка.

Опубликовав свои результаты в конце 1900 года, сам Планк — и это видно из его публикаций — сначала не верил в то, что кванты — физическая реальность, а не удобная математическая модель. Однако, когда пять лет спустя Альберт Эйнштейн опубликовал статью, объясняющую фотоэлектрический эффект на основе квантования энергии излучения, в научных кругах формулу Планка стали воспринимать уже не как теоретическую игру, а как описание реального физического явления на субатомном уровне, доказывающее квантовую природу энергии.

Постоянная Планка фигурирует во всех уравнениях и формулах квантовой механики. Она, в частности, определяет масштабы, начиная с которых вступает в силу принцип неопределенности Гейзенберга . Грубо говоря, постоянная Планка указывает нам нижний предел пространственных величин, после которого нельзя не принимать во внимание квантовые эффекты. Для песчинок, скажем, неопределенность произведения их линейного размера на скорость настолько незначительна, что ею можно пренебречь. Иными словами, постоянная Планка проводит границу между макромиром, где действуют законы механики Ньютона, и микромиром, где вступают в силу законы квантовой механики. Будучи получена всего лишь для теоретического описания единичного физического явления, постоянная Планка вскоре стала одной из фундаментальных констант теоретической физики, определяемых самой природой мироздания.

См. также:

Max Karl Ernst Ludwig Plank, 1858-1947

Немецкий физик. Родился в г. Киль в семье профессора юриспруденции. Будучи пианистом-виртуозом, Планк в юности был вынужден сделать нелегкий выбор между наукой и музыкой (рассказывают, что перед первой мировой войной на досуге пианист Макс Планк часто составлял весьма профессиональный классический дуэт со скрипачом Альбертом Эйнштейном. — Прим. переводчика ) Докторскую диссертацию по второму началу термодинамики Планк защитил в 1889 году в Мюнхенском университете — и в том же году стал преподавателем, а с 1892 года — профессором Берлинского университета, где и проработал до своего выхода на пенсию в 1928 году. Планк по праву считается одним из отцов квантовой механики . Сегодня его имя носит целая сеть немецких научно-исследовательских институтов.

Сокольников Михаил Леонидович,

Ахметов Алексей Лирунович

Свердловский областной негосударственный фонд

содействия развитию науки,культуры и искусства Меценат

Россия, Екатерибург

Email: [email protected]

Реферат: Показана связь постоянной Планка с законом Вина и третьим законом Кеплера. Получено точное значение постоянной Планка для жидкого или твёрдого агрегатного состояния вещества, равное

h = 4*10 -34 дж*сек.

Выведена формула, объединяющая четыре физических константы – скорость света – с, постоянную Вина – в, постоянную Планка – h и постоянную Больцмана – k

Ключевые слова: постоянная Планка, постоянная Вина, постоянная Больцмана, третий закон Кеплера, квантовая механика

The Foundation "Maecenas"
Sokolnikov M.L., Akhmetov A.L.

Yekaterinburg, Russian Federation

Email: [email protected]
Abstract: The connection to the Planck constant with Wien"s displacement law and Kepler"s third law. The exact value of Planck"s constant for the liquid or solid state of aggregation of matter equal to

h = 4*10 -34 J*s.
The formula that combines four physical constants - the speed of light - c,

Wien"s displacement constant - в, Planck constant - h and the Boltzmann constant - k

Keywords: Planck constant, Wien"s displacement constant, the Boltzmann constant, Kepler"s third law, quantum mechanics

Об этой физической константе впервые заявил немецкий физик Макс Планк в 1899 году. В этой статье постараемся ответить на три вопроса:

1. В чём заключается физический смысл постоянной Планка?

2. Как её можно вычислить из реальных экспериментальных данных?

3. Связано ли с постоянной Планка утверждение о том, что энергия может передаваться только определёнными порциями – квантами?

Введение

Читая современную научную литературу, невольно обращаешь внимание на то, насколько сложно, а иногда и туманно авторы отображают эту тему. Поэтому в своей статье я постараюсь объяснить ситуацию простым русским языком, не выходя за уровень школьных формул. История эта началась во второй половине 19 века, когда учёные начали детально изучать процессы теплового излучения тел. Для повышения точности измерений при этих экспериментах использовались специальные камеры, которые давали возможность приблизить коэффициент поглощения энергии к единице. Устройство этих камер подробно описано в различных источниках и я не буду на этом останавливаться, замечу только, что сделаны они могут быть практически из любого материала. Оказалось, что излучение тепла является излучением электромагнитных волн в инфракрасном диапазоне, т.е. на частотах, несколько ниже видимого спектра. В ходе экспериментов было установлено, что при любой конкретной температуре тела в спектре ИК излучения этого тела наблюдается пик максимальной интенсивности этого излучения. При повышении температуры этот пик сдвигался в сторону более коротких волн, т.е. в область более высоких частот ИК излучения. Графики этой закономерности тоже есть в различных источниках и я не буду их рисовать. Вторая закономерность уже была по настоящему удивительной. Оказалось, что различные вещества при одной и той же температуре имеют пик излучения на одной и той же частоте. Ситуация требовала теоретического объяснения. И тут Планк предлагает формулу, связывая энергию и частоту излучения:

где Е ― энергия, f - частота излучения, а h – постоянная величина, которая позже и была названа в его честь. Планк вычислил и значение этой величины, которая, по его расчётам оказалась равной

h = 6,626*10 -34 дж*сек.

Количественно эта формула описывает реальные экспериментальные данные не совсем точно и далее вы увидите, почему, а с точки зрения теоретического объяснения ситуации она полностью соответствует действительности, что вы позже тоже увидите.

Подготовительная часть

Далее мы вспомним несколько физических законов, которые лягут в основу наших дальнейших рассуждений. Первым будет формула кинетической энергии тела, совершающего вращательное движение по круговой или эллиптической траектории. Она выглядит следующим образом:

т.е. произведению массы тела на квадрат скорости, с которой тело движется по орбите. Скорость V при этом вычисляется по простой формуле:

где Т – период обращения, и в качестве R при круговом движении берётся радиус вращения, а при эллиптической траектории большая полуось эллипса траектории. Для одного атома вещества есть одна очень полезная для нас формула, связывающая температуру с энергией атома:

Здесь t – температура в градусах Кельвина, а k – постоянная Больцмана, которая равна 1,3807*10 -23 дж/К. Если взять температуру в один градус, то, в соответствии с этой формулой, энергия одного атома будет равна:

(2) Е = 4140*10 -26 дж

Причём эта энергия будет одинаковой как для атома свинца, так и для атома алюминия или атома любого другого химического элемента. В этом как раз и заключается смысл понятия «температура». Из формулы (1), справедливой для твёрдого и жидкого агрегатного состояния вещества, видно, что равенство энергий для различных атомов с различной массой при температуре в 1 градус достигается лишь с помощью изменения величины квадрата скорости, т.е. скорости, с которой атом совершает движение по своей круговой или эллиптической орбите. Поэтому, зная энергию атома при одном градусе и массу атома, выраженную в килограммах, мы можем без труда вычислить линейную скорость данного атома при любой температуре. Как это делается, поясним на конкретном примере. Возьмём из таблицы Менделеева любой химический элемент, например – молибден. Далее возьмем любую температуру, например – 1000 градусов Кельвина. Зная из формулы (2) значение энергии атома при 1 градусе, мы можем узнать энергию атома при взятой нами температуре, т.е. умножить это значение на 1000. Получилось:

(3) Энергия атома молибдена при 1000К = 4,14*10 -20 дж

Теперь вычислим значение массы атома молибдена, выраженное в килограммах. Делается это при помощи таблицы Менделеева. В клетке каждого химического элемента, около его порядкового номера, указана его молярная масса. Для молибдена это 95,94. Остается это число разделить на число Авогадро, равное 6,022*10 23 и полученный результат умножить на 10 -3 , так как в таблице Менделеева молярная масса указана в граммах. Получается 15,93 *10 -26 кг. Далее из формулы

mV 2 = 4,14*10 -20 дж

вычислим скорость и получаем

V = 510м/сек.

Тут нам пора переходить к следующему вопросу подготовительного материала. Вспомним о таком понятии, как момент импульса. Это понятие было введено для тел, совершающих движение по окружности. Можно провести простой пример: взять короткую трубку, пропустить через неё шнур, привязать к шнуру груз массой m и, придерживая шнур одной рукой, другой рукой раскрутить груз над головой. Перемножив значение скорости движения груза на его массу и радиус вращения, получим значение момента импульса, который обычно обозначается буквой L. Т.е.

Потянув шнур через трубку вниз, мы уменьшим радиус вращения. При этом скорость вращения груза возрастёт и его кинетическая энергия увеличится на величину той работы, которую вы выполните, тянув за шнур для уменьшения радиуса. Однако, умножив массу груза на новые значения скорости и радиуса, мы получим то же самое значение, которое у нас получилось до того, как мы уменьшили радиус вращения. Это и есть закон сохранения импульса. Ещё в 17 веке Кеплер во втором своём законе доказал, что этот закон соблюдается и для спутников, двигающихся вокруг планет по эллиптическим орбитам. При приближении к планете скорость спутника возрастает, а при удалении от него уменьшается. При этом произведение mVR остается неизменным. То же самое касается и планет, двигающихся вокруг Солнца. Попутно вспомним и третий закон Кеплера. Вы спросите – зачем? Затем, что в этой статье вы увидите то, о чем не написано ни в одном научном источнике – формулу третьего закона движения планет Кеплера в микромире. А теперь о сути этого самого третьего закона. В официальной трактовке он звучит довольно витиевато: «квадраты периодов обращений планет вокруг Солнца пропорциональны кубам больших полуосей их эллиптических орбит». У каждой планеты есть два личных параметра – расстояние до Солнца и время, за которое она делает один полный оборот вокруг Солнца, т.е. период обращения. Так вот, если расстояние возвести в куб, а потом полученный результат разделить на период, возведённый в квадрат, то получится какая-то величина, обозначим её буквой С. А если произвести вышеуказанные математические действия с параметрами любой другой планеты, то получится та же самая величина – С. Несколько позже, на основе третьего закона Кеплера, Ньютон вывел Закон Всемирного тяготения, а ещё через 100 лет Кавендиш вычислил истинное значение гравитационной постоянной – G. И только после этого стал ясен истинный смысл этой самой константы – С. Оказалось, что это зашифрованная величина массы Солнца, выраженная в единицах измерения длина в кубе, делённые на время в квадрате. Проще говоря, зная расстояние планеты до Солнца и период её обращения, можно вычислить массу Солнца. Пропуская несложные математические преобразования, сообщу, что коэффициент пересчёта равен

Поэтому справедлива формула, с аналогом которой мы ещё встретимся:

(4) 4π 2 R 3 /T 2 G = M солнца (кг)

Основная часть

Теперь можно переходить к главному. Разберёмся с размерностью постоянной Планка. Из справочников мы видим, что величина постоянной Планка

h = 6,626*10 -34 дж*сек.

Для тех, кто подзабыл физику, напомню, что эта размерность эквивалентна размерности

кг*метр 2 /сек.

Это есть размерность момента импульса

Теперь возьмём формулу энергии атома

и формулу Планка

Для одного атома любого вещества при заданной температуре величины этих энергий должны совпадать. Учитывая, что частота обратна периоду излучения, т.е.

а скорость

где R – радиус вращения атома, мы можем написать:

m4π 2 R 2 /T 2 = h/T.

Отсюда мы видим, что постоянная Планка не является моментом импульса в чистом виде, а отличается от него на сомножитель 2π. Вот мы и определили её истинную суть. Осталось только её вычислить. Перед тем, как мы сами начнём её вычислять, давайте посмотрим, как это делают другие. Заглянув в лабораторные работы по этой теме, мы увидим, что в большинстве случаев постоянную Планка вычисляют их формул фотоэффекта. Но законы фотоэффекта были открыты гораздо позже, чем Планк вывел свою постоянную. Поэтому поищем другой закон. Он есть. Это закон Вина, открытый в 1893 году. Суть этого закона проста. Как мы уже говорили, при определённой температуре нагретое тело имеет пик интенсивности ИК излучения на определённой частоте. Так вот, если умножить значение температуры на значение волны ИК излучения, соответствующей этому пику, то получится некая величина. Если взять другую температуру тела, то пик излучения будет соответствовать другой длине волны. Но и тут, при перемножении этих величин получится тот же результат. Вин вычислил эту константу и выразил свой закон в виде формулы:

(5) λt = 2,898*10 -3 м*градус К

Здесь λ - длина волны ИК излучения в метрах, а t - значение температуры в градусах Кельвина. Этот закон по своей значимости можно приравнять к законам Кеплера. Теперь, посмотрев на нагретое тело через спектроскоп и определив длину волны, на которой наблюдается пик излучения, можно по формуле закона Вина дистанционно определить температуру тела. На этом принципе работают все пирометры и тепловизоры. Хотя тут не всё так просто. Пик излучения показывает, что большинство атомов в нагретом теле излучает именно эту длину волны, т.е. имеют именно эту температуру. А излучение справа и слева от пика показывает, что в теле есть как «недогретые», так и «перегретые» атомы. В реальных условиях бывает даже несколько «горбов» излучения. Поэтому современные пирометры измеряют интенсивность излучения в нескольких точках спектра, а потом полученные результаты интегрируются, что даёт возможность получить максимально точные результаты. Но вернёмся к нашим вопросам. Зная, с одной стороны, что из формулы (1) температура соответствует кинетической энергии атома через постоянный коэффициент 3к, а с другой стороны, произведение температуры на длину волны в законе Вина тоже константа, раскладывая квадрат скорости в формуле кинетической энергии атома на сомножители, мы можем записать:

m4π 2 R 2 λ/T 2 = константа.

В левой половине уравнения m - константа, значит и всё остальное в левой части

4π 2 R 2 λ/T 2 – константа.

А теперь сравните это выражение с формулой третьего закона Кеплера (4). Тут, конечно, речь не идёт о гравитационном заряде Солнца, тем не менее, в этом выражении зашифрована величина некого заряда, суть и свойства которого весьма интересны. Но эта тема достойна отдельной статьи, поэтому мы продолжим свою. Вычислим значение постоянной Планка на примере атома молибдена, который мы уже взяли в качестве примера. Как мы уже установили, формула постоянной Планка

Ранее мы уже вычислили значения массы атома молибдена и скорость его движения по своей траектории. Нам осталось вычислить лишь радиус вращения. Как это сделать? Здесь нам поможет закон Вина. Зная значение температуры молибдена = 1000 градусов, мы по формуле (5) легко вычислим длину волны λ, которая получится

λ = 2,898*10 -6 м.

Зная, что инфракрасные волны распространяются в пространстве со скоростью света - с, мы по простой формуле

вычислим частоту излучения атома молибдена при температуре 1000 градусов. И получится этот период

Т = 0,00966 *10 -12 сек.

Но это именно та частота, которую генерирует атом молибдена, двигаясь по своей орбите вращения. Ранее мы уже вычислили скорость этого движения V=510 м/сек, а сейчас знаем и частоту вращения Т. Осталось только из простой формулы

вычислить радиус вращения R. Получается

R = 0,7845*10 -12 м.

И теперь нам остаётся только вычислить значение постоянной Планка, т.е. Перемножить значения

массы атома (15,93*10 -26 кг),

скорости (510м/сек),

радиуса вращения (0,7845*10 -12 м)

и удвоенного значения числа «пи». Получаем

4*10 -34 дж*сек.

Стоп! В любом справочнике вы найдёте значение

6,626*10 -34 дж*сек!

Кто прав? Вы сами по указанной методике можете просчитать значение постоянной Планка для атомов любых химических элементов при любой температуре, не превышающую температуру испарения. Во всех случаях получится величина именно

4*10 -34 дж*сек,

6,626*10 -34 дж*сек.

Но. лучше всего, чтобы ответ на этот вопрос дал сам Планк. Давайте в его формулу

подставим наше значение его постоянной, а частота излучения при 1000 градусах вычислена нами на основе закона Вина, который сотни раз перепроверялся и выдержал все экспериментальные проверки. Учитывая, что частота является величиной, обратной периоду, т.е.

вычислим энергию атома молибдена при 1000 градусах. Получаем

4*10 -34 /0,00966*10 -12 = 4,14*10 -20 дж.

А теперь сравним полученный результат с другим, полученным по независимой формуле, достоверность которой не вызывает сомнений (3). Эти результаты совпадают, что является лучшим доказательством. А мы ответим на последний вопрос – содержит ли формула Планка неопровержимые доказательства того, что энергия передаётся только квантами? Иногда читаешь в серьёзных источниках такое объяснение – вот, видите, при частоте 1Гц мы имеем определённое значение энергии, а при частоте в 2 Гц оно будет кратным величине постоянной Планка. Это и есть квант. Господа! Значение частоты может быть 0,15 Гц, 2,25 Гц или любое другое. Частота является обратной функцией длины волны и для электромагнитного излучения связаны через скорость света функцией типа

График этой функции не допускает никакого квантования. А теперь о квантах в общем. В физике существуют законы, выраженные в формулах, где присутствуют целые неделимые числа. Например, электрохимический эквивалент вычисляется по формуле масса атома/к, где к – целое число, равное валентности химического элемента. Целые числа присутствуют и при параллельном соединении конденсаторов при вычислении общей ёмкости системы. С энергией то же самое. Простейший пример – переход вещества в газообразное состояние, где однозначно присутствует квант в виде числа 2. Интересна и серия Бальмера и некоторые другие соотношения. Но к формуле Планка это не имеет никакого отношения. Кстати, сам Планк был такого же мнения.

Заключение

Если открытие закона Вина можно по значимости сравнить с законами Кеплера, то открытие Планка можно сравнить с открытием Закона Всемирного тяготения. Он превратил безликую постоянную Вина в константу, имеющую и размерность и физический смысл. Доказав, что при жидком или твёрдом агрегатном состоянии вещества, для атомов любых элементов при любой температуре сохраняется момент импульса, Планк совершил великое открытие, позволившее по новому взглянуть на окружающий нас физический мир. В заключение приведу интересную формулу, выведенную из вышесказанного и объединяющую четыре физических константы – скорость света – с, постоянную Вина – в, постоянную Планка – h и постоянную Больцмана – k.

ПЛАНКА ПОСТОЯННАЯ h , одна из универсальных числовых констант природы, входящая во многие формулы и физические законы, описывающие поведение материи и энергии в масштабах микромира. Существование этой константы было установлено в 1900 профессором физики Берлинского университета М.Планком в работе, заложившей основы квантовой теории. Им же была дана предварительная оценка ее величины. Принятое в настоящее время значение постоянной Планка равно (6,6260755 ± 0,00023)Ч 10 –34 ДжЧ с.

Планк сделал это открытие, пытаясь найти теоретическое объяснение спектра излучения, испускаемого нагретыми телами. Такое излучение испускают все тела, состоящие из большого числа атомов, при любой температуре выше абсолютного нуля, однако оно становится заметным лишь при температурах, близких к температуре кипения воды 100° С и выше нее. Кроме того, оно охватывает весь спектр частот от радиочастотного диапазона до инфракрасной, видимой и ультрафиолетовой областей. В области видимого света излучение становится достаточно ярким лишь примерно при 550° С. Зависимость интенсивности излучения за единицу времени от частоты характеризуется спектральными распределениями, представленными на рис. 1 для нескольких значений температуры. Интенсивность излучения при данном значении частоты есть количество энергии, излучаемой в узкой полосе частот в окрестности данной частоты. Площадь кривой пропорциональна полной энергии, излучаемой на всех частотах. Как нетрудно видеть, эта площадь быстро увеличивается с повышением температуры.

Планк хотел вывести теоретически функцию спектрального распределения и найти объяснение двух простых установленных экспериментально закономерностей: частота, отвечающая наиболее яркому свечению нагретого тела, пропорциональна абсолютной температуре, а полная энергия, излучаемая за 1 с единичной площадкой поверхности абсолютно черного тела, – четвертой степени его абсолютной температуры.

Первую закономерность можно выразить формулой

где n m – частота, соответствующая максимальной интенсивности излучения, Т – абсолютная температура тела, а a – постоянная, зависящая от свойств излучающего объекта. Вторая закономерность выражается формулой

где Е – полная энергия, излучаемая единичной площадкой поверхности за 1 с, s – постоянная, характеризующая излучающий объект, а Т – абсолютная температура тела. Первая формула называется законом смещения Вина, а вторая – законом Стефана – Больцмана. Планк стремился на основании этих законов вывести точное выражение для спектрального распределения излучаемой энергии при любой температуре.

Универсальный характер явления можно было объяснить с позиций второго начала термодинамики, согласно которому тепловые процессы, протекающие самопроизвольно в физической системе, всегда идут в направлении установления в системе теплового равновесия. Представим себе, что два полых тела А и В разной формы, разного размера и из разного материала с одной температурой обращены друг к другу, как показано на рис. 2. Если предположить, что из А в В приходит больше излучения, чем из В в А , то тело В неизбежно становилось бы более теплым за счет А и равновесие самопроизвольно нарушалось бы. Такая возможность исключается вторым началом термодинамики, а следовательно, оба тела должны излучать одинаковое количество энергии, и, стало быть, величина s в формуле (2) не зависит от размера и материала излучающей поверхности, при условии, что последняя представляет собой некую полость. Если полости разделить цветным экраном, который фильтровал бы и отражал обратно все излучение, кроме излучения с какой-либо одной частотой, то все сказанное осталось бы справедливым. Это означает, что количество излучения, испускаемого каждой полостью в каждом участке спектра, одно и то же, и функция спектрального распределения для полости носит характер универсального закона природы, причем величина a в формуле (1), подобно величине s , является универсальной физической константой.

Планк, хорошо владевший термодинамикой, предпочел именно такое решение проблемы и, действуя методом проб и ошибок, нашел термодинамическую формулу, которая позволяла вычислять функцию спектрального распределения. Полученная формула согласовалась со всеми имевшимися экспериментальными данными и, в частности, с эмпирическими формулами (1) и (2). Чтобы объяснить это, Планк воспользовался хитроумной уловкой, подсказанной вторым началом термодинамики. Справедливо полагая, что термодинамика вещества лучше изучена, нежели термодинамика излучения, он сосредоточил свое внимание преимущественно на веществе стенок полости, а не на излучении внутри нее. Поскольку постоянные, входящие в законы Вина и Стефана – Больцмана, не зависят от природы вещества, Планк был вправе делать любые предположения относительно материала стенок. Он выбрал модель, в которой стенки состоят из огромного числа крошечных электрически заряженных осцилляторов, каждый со своей частотой. Осцилляторы под действием падающего на них излучения могут колебаться, излучая при этом энергию. Весь процесс можно было исследовать исходя из хорошо известных законов электродинамики, т.е. функцию спектрального распределения можно было найти, вычислив среднюю энергию осцилляторов с разными частотами. Обратив последовательность рассуждений, Планк, исходя из угаданной им правильной функции спектрального распределения, нашел формулу для средней энергии U осциллятора с частотой n в полости, находящейся в равновесии при абсолютной температуре Т :

где b – величина, определяемая экспериментально, а k – постоянная (называемая постоянной Больцмана, хотя впервые была введена Планком), которая фигурирует в термодинамике и кинетической теории газов. Поскольку эта постоянная обычно входит с множителем Т , удобно ввести новую постоянную h = b k. Тогда b = h /k и формулу (3) можно переписать в виде

Новая постоянная h и представляет собой постоянную Планка; вычисленное Планком ее значение составило 6,55Ч 10 –34 ДжЧ с, что всего лишь примерно на 1% отличается от современного значения. Теория Планка позволила выразить величину s в формуле (2) через h, k и скорость света с :

Это выражение согласовалось с экспериментом в пределах той точности, с которой были известны константы; позднее более точные измерения не обнаружили расхождений.

Таким образом, проблема объяснения функции спектрального распределения свелась к более «простой» задаче. Нужно было объяснить, каков физический смысл постоянной h или, вернее, произведения hn . Открытие Планка состояло в том, что объяснить ее физический смысл можно, лишь введя в механику совершенно новое понятие «кванта энергии». 14 декабря 1900 на заседании Немецкого физического общества Планк в своем докладе показал, что формулу (4), а тем самым и остальные формулы можно объяснить, если предположить, что осциллятор с частотой n обменивается энергией с электромагнитным полем не непрерывно, а как бы ступенями, приобретая и теряя свою энергию дискретными порциями, квантами, каждый из которых равен hn . ТЕПЛОТА; ТЕРМОДИНАМИКА. Следствия из сделанного Планком открытия изложены в статьях ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ; КОМПТОНА ЭФФЕКТ; АТОМ; АТОМА СТРОЕНИЕ; КВАНТОВАЯ МЕХАНИКА.

Квантовая механика представляет собой общую теорию явлений в масштабе микромира. Открытие Планка выступает ныне как вытекающее из уравнений этой теории важное следствие особого характера. В частности, оказалось, что оно имеет силу для всех процессов обмена энергией, которые происходят при колебательном движении, например в акустике и в электромагнитных явлениях. Им объясняется высокая проникающая способность рентгеновского излучения, частоты которого в 100–10 000 раз превышают частоты, характерные для видимого света, и кванты которого имеют соответственно более высокую энергию. Открытие Планка служит основой всей волновой теории материи, имеющей дело с волновыми свойствами элементарных частиц и их комбинаций.

между характеристиками волны и частицы. Эта гипотеза подтвердилась, что сделало постоянную Планка универсальной физической константой. Ее роль оказалась гораздо более значительной, чем можно было бы предполагать с самого начала.

Цель работы: экспериментальное определение постоянной Планка при помощи спектров испускания и поглощения.

Приборы и принадлежности: спектроскоп, лампа накаливания, ртутная лампа, кювета с хромпиком.

  1. Теоретическое введение

Атом является наименьшей частицей химического элемента, определяющей его основные свойства. Опытами Э.Резерфорда была обоснована планетарная модель атома. В центре атома находится положительно заряженное ядро с зарядом Z e (Z – число протонов в ядре, т.е. порядковый номер химического элемента периодической системы Менделеева; e – заряд протона, равный заряду электрона). Вокруг ядра движутся электроны в электрическом поле ядра.

Устойчивость такой системы атома обосновывается постулатами Бора.

Первый постулат Бора (постулат стационарных состояний): в устойчивом состоянии атома электроны движутся по опреде­лен­ным стационарным орбитам, не излучая при этом электро­маг­нитной энергии; стационарные орбиты электронов определяются по правилу квантования:

. (2)

На электрон, движущийся по орбите вокруг ядра, действует кулоновская сила:

. (3)

Для атома водорода Z =1. Тогда

. (4)

Решая совместно уравнения (2) и (4), можно определить:

а) радиус орбиты

; (5)

б) скорость электрона

; (6)

в) энергию электрона

. (7)

Энергетический уровень – энергия, которой обладает электрон атома в определенном стационарном состоянии.

Атом водорода имеет один электрон. Состояние атома с n =1 называется основным состоянием. Энергия основного состояния

В основном состоянии атом способен только поглощать энергию.

При квантовых переходах атомы (молекулы) скачкообразно переходят из одного стационарного состояния в другое, т. е. с одного энергетического уровня на другой. Изме­не­ние состояния атомов (молекул) связано с энергетическими пере­хо­дами электронов с одних стационарных орбит на другие. При этом излучаются или поглощаются электромагнитные волны различных частот.

Второй постулат Бора (правило частот): при переходе электрона с одной стационарной орбиты на другую излучается или поглощается один фотон с энергией

, (8)

равной разности энергий соответствующих стационарных состояний (и - соответственно энергии стационарных состояний атома до и после излучения или поглощения).

Энергия излучается или поглощается отдельными порциями – квантами (фото­на­ми), и энергия каждого кванта (фотона) связана с частотой ν из­лучаемых волн соотношением

, (9)

где h – постоянная Планка. Постоянная Планка – одна из важнейших констант атомной физики, численно равная энергии одного кванта излучения при частоте излучения 1 Гц.

Учитывая это, уравнение (8) можно записать в виде

. (10)

Совокупность электромагнитных волн всех частот, которые излу­чает и поглощает данный атом (молекула), составляет спектр испус­кания или поглощения данного вещества . Так как атом каждого вещества имеет свое внутреннее строение, поэтому каждый атом обладает индивидуальным, только ему присущим спектром. На этом основан спектральный анализ, открытый в 1859 г. Кирхгофом и Бунзеном.

Характеристика спектров испускания

Спектральный состав излучения веществ весьма разнообразен. Но, несмотря на это, все спектры можно разделить на три типа.

Непрерывные спектры. В непрерывном спектре представлены длины всех волн. В таком спектре нет разрывов, он состоит из участков разного цвета, переходящих один в другой.

Непрерывные (или сплошные) спектры дают тела, находящиеся в твердом или жидком состоянии (лампа накаливания, расплавленная сталь и др.), а также сильно сжатые газы. Для получения непрерывного спектра нужно нагреть тело до высокой температуры.

Непрерывный спектр дает также высокотемпературная плазма. Электромагнитные волны излучаются плазмой в основном при столкновении электронов с ионами.

Линейчатые спектры. Линейчатые спектры испускания состоят из отдельных спектральных линий, разделенных темными промежутками.

Линейчатые спектры дают все вещества в газообразном атомарном состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах).

Полосатые спектры. Полосатые спектры испускания состоят из отдельных групп линий, настолько близко расположенных, что они сливаются в полосы. Таким образом, полосатый спектр состоит из отдельных полос, разделенных темными промежутками.

В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Для наблюдения атомарных и молекулярных спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом.

Характеристика спектров поглощения.

Спектр поглощения можно наблюдать, если на пути излучения, идущего от источника, который дает сплошной спектр испускания, расположить вещество, поглощающее те или иные лучи различных длин волн.

В этом случае в поле зрения спектроскопа будут видны темные линии или полосы в тех местах сплошного спектра, которые соответствуют поглощению. Характер поглощения определяется природой и строением поглощающего вещества. Газ поглощает свет как раз тех длин волн, которые он испускает в сильно нагретом состоянии. На рисунке 1 приведены спектры испускания и поглощения водорода.

Спектры поглощения, как и спектры испускания, делятся на сплошные, линейчатые и полосатые.

Сплошные спектры поглощения наблюдаются при поглощении веществом, находящемся в конденсированном состоянии.

Линейчатые спектры поглощения наблюдаются в случае, когда между источником сплошного спектра излучения и спектроскопом располагают поглощающее вещество в газообразном состоянии (атомарный газ).

Полосатые – при поглощении веществами, состоящими из молекул (растворы).